NMDA antagonists increase recovery of evoked potentials from slices of rat olfactory cortex after anoxia.
نویسندگان
چکیده
1. The role of glutamate in producing tissue damage during cerebral anoxia was investigated in brain slices using antagonists to the NMDA and AMPA receptor types. 2. Tissue function was assessed by field recordings of the synaptically evoked potentials elicited by stimulating the main afferent input to the olfactory cortex, the lateral olfactory tract. Anoxia was produced by bathing the slice in glucose-free solution equilibrated with 95% N2/5% CO2. 3. The amount of recovery of the evoked potential was inversely dependent on the period of anoxia and temperature: at 24 degrees C, 15 min of anoxia followed by reoxygenation produced a 14.6 +/- 4.1% recovery whereas there was no recovery at 35 degrees C. 4. Dizocilpine and ketamine had no effect on synaptic transmission in oxygenated media but following anoxia they produced an increased recovery of the responses: from 14.6 +/- 4.1% to 48.3 +/- 7.8% for dizocilpine (10 microM) and 21.6 +/- 7.7% to 87.2 +/- 7.1% for ketamine (200 microM); the tissue endurance to anoxia was increased by around 5 min. 5. Blockade of the AMPA receptors did not influence recovery in spite of the depressed synaptic transmission. A similar synaptic attenuation produced by lignocaine provided some increase in post-anoxic recovery. 6. The NMDA receptor antagonist, AP5, antagonized NMDA at 50 microM by 3.7 fold and at 200 microM by 15 fold but only 200 microM increased post-anoxic recovery. This suggests that a substantial degree of NMDA antagonist is required before anoxic tissue damage due to NMDA receptor activation can be nullified. The antagonist to the glycine binding site, 7-chlorokynurenic acid also increased recovery. 7. These in vitro experiments confirm the idea that NMDA receptor activation makes a substantial contribution to cerebral tissue damage and that this can be reduced by a substantial blockade of these receptors.
منابع مشابه
Effects of visual deprivation on epileptic activity in mature rat visual cortex
Effects of visual deprivation on the induction of epileptiform activity were studied in layer II/III of mature rat primary visual cortex. Field potentials were evoked by stimulation of layer IV in slices from control and dark-reared (OR) rats. Picrotoxin (PTX)-induced epileptic activity was characterized by spontaneous and evoked epileptic field potentials (EFPs). The results showed that OR s...
متن کاملComplementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells.
Main olfactory bulb (MOB) granule cells receive spatially segregated glutamatergic synaptic inputs from the dendrites of mitral/tufted cells as well as from the axons of centrifugal fibers (CFFs) originating in olfactory cortical areas. Dendrodendritic synapses from mitral/tufted cells occur on granule cell distal dendrites in the external plexiform layer (EPL), whereas CFFs preferentially targ...
متن کاملInvolvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex
In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...
متن کاملActivity of putative cognition enhancers in kynurenate test performed with human neocortex slices.
Some cognition enhancers were previously shown to potently prevent antagonism of the N-methyl-D-aspartate (NMDA)-evoked release of norepinephrine (NE) brought about in slices of rat hippocampus by kynurenic acid, an endogenous NMDA receptor blocker. We have examined the impact of putative nootropic agents in the kynurenate test performed with slices of human cerebral cortex from patients underg...
متن کاملDuration of NMDA-dependent synaptic potentiation in piriform cortex in vivo is increased after epileptiform bursting.
Stimulation of afferent fibers with current pulse trains has been reported to induce long-term potentiation (LTP) in piriform cortex in vitro but not in vivo. LTP has been observed in vivo only when trains are paired with behavioral reinforcement and as a consequence of kindled epileptogenesis. This study was undertaken in the urethan-anesthetized rat to determine if the reported failures to ob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- British journal of pharmacology
دوره 111 4 شماره
صفحات -
تاریخ انتشار 1994